Total Colorings of $F_5$-free Planar Graphs with Maximum Degree 8
نویسندگان
چکیده
The total chromatic number of a graph G, denoted by χ′′(G), is the minimum number of colors needed to color the vertices and edges of G such that no two adjacent or incident elements get the same color. It is known that if a planar graph G has maximum degree ∆ > 9, then χ′′(G) = ∆ + 1. The join K1 ∨ Pn of K1 and Pn is called a fan graph Fn. In this paper, we prove that if G is an F5-free planar graph with maximum degree 8, then χ′′(G) = 9.
منابع مشابه
Negative results on acyclic improper colorings
Raspaud and Sopena showed that the oriented chromatic number of a graph with acyclic chromatic number k is at most k2. We prove that this bound is tight for k ≥ 3. We also consider acyclic improper colorings on planar graphs and partial ktrees. Finally, we show that some improper and/or acyclic colorings are NP-complete on restricted subclasses of planar graphs, in particular acyclic 3-colorabi...
متن کاملTotal-Coloring of Plane Graphs with Maximum Degree Nine
The central problem of the total-colorings is the total-coloring conjecture, which asserts that every graph of maximum degree ∆ admits a (∆+2)-total-coloring. Similar to edge-colorings—with Vizing’s edge-coloring conjecture—this bound can be decreased by 1 for plane graphs of higher maximum degree. More precisely, it is known that if ∆ ≥ 10, then every plane graph of maximum degree ∆ is (∆ + 1)...
متن کاملOn total colorings of 1-planar graphs
A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other edge. In this paper, we confirm the total-coloring conjecture for 1-planar graphs with maximum degree
متن کاملA Unified Spiral Chain Coloring Algorithm for Planar Graphs
In this paper we have given a unified graph coloring algorithm for planar graphs. The problems that have been considered in this context respectively, are vertex, edge, total and entire colorings of the planar graphs. The main tool in the coloring algorithm is the use of spiral chain which has been used in the non-computer proof of the four color theorem in 2004. A more precies explanation of t...
متن کاملPlanarization and Acyclic Colorings of Subcubic Claw-Free Graphs
We study methods of planarizing and acyclically coloring claw-free subcubic graphs. We give a polynomial-time algorithm that, given such a graph G, produces an independent set Q of at most n/6 vertices whose removal from G leaves an induced planar subgraph P (in fact, P has treewidth at most four). We further show the stronger result that in polynomial-time a set of at most n/6 edges can be ide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 21 شماره
صفحات -
تاریخ انتشار 2014